Проективный пучок
- Проективное расслоение — это расслоение, которое можно представить как пространство над проективной плоскостью.
- Проективные расслоения имеют линейные автоморфизмы переходов.
- Каждое векторное расслоение над многообразием дает проективное расслоение.
- Проективное расслоение векторного расслоения характеризуется универсальным свойством.
- На P (E) существует естественная точная последовательность, называемая тавтологической точной последовательностью.
- Примеры нетривиальных проективных расслоений включают расслоения Лефшеца и эллиптические поверхности K3.
- Кольцо когомологий H * (P (E)) является алгеброй над H * (X) через откат p*.
Полный текст статьи: