Теорема о простых числах – Arc.Ask3.Ru
Теорема о простых числах Теорема о простых числах Описывает асимптотическое распределение простых чисел между целыми положительными числами Доказана Жаком Адамаром […]
Теорема о простых числах Теорема о простых числах Описывает асимптотическое распределение простых чисел между целыми положительными числами Доказана Жаком Адамаром […]
Транзитные линии Определение и структура TLE TLE — неархимедово упорядоченное дифференциальное поле, расширяющее сопоставимость асимптотических скоростей роста. Включает логарифмические и
Натуральный логарифм Определение натурального логарифма Натуральный логарифм числа x — это степень, в которую нужно возвести e, чтобы получить x.
Повторяющийся логарифм Определение повторяющегося логарифма Повторяющийся логарифм – это количество итераций логарифмирования для достижения значения меньше или равного 1. Используется
Теорема о простых числах Основные идеи и доказательства теоремы Ньюмана Теорема Ньюмана утверждает, что для любого R > 0 существует
Логарифм матрицы Определение и свойства логарифма матрицы Логарифм матрицы – это матрица, обратная к экспоненциальной матрице. Логарифм существует, если матрица
Описание канонического логарифма Мирифици Изобретение логарифмов Джоном Нейпиром Нейпир разработал метод вычисления логарифмов, который был более точным, чем методы его
Список логарифмических тождеств Определение и свойства логарифма Логарифм – это показатель степени, в которую нужно возвести основание, чтобы получить число,
Общий логарифм Основы логарифмов Логарифм с основанием 10 известен как десятичный логарифм или логарифм Бриггса. Обозначается log(x), log10(x) или Log(x)
Список представительств e Представление числа e e – иррациональное число, не представимое в виде частного двух целых чисел. e может
Логарифмическая линейка История и развитие логарифмических линеек Логарифмические линейки использовались для научных и инженерных расчетов с 1600-х годов. Изобретение логарифмической
История логарифмов История логарифмов связана с соответствием умножения на положительные числа и сложения на линейке действительных чисел. Логарифмы были формализованы
Двоичный логарифм Двоичный логарифм используется для вычисления логарифма числа по основанию 2. Он имеет множество применений в математике, информатике, теории
Логарифмическая спираль Логарифмическая спираль – кривая, описываемая уравнением r = ae^kφ. Она имеет самоподобие и инверсия отображает одну спираль на
Полукольцо из бревен Логарифмическое полукольцо возникает при работе с логарифмами, такими как децибелы, логарифмическая вероятность или логарифмические вероятности. Логарифмическое полукольцо
Логарифмическое дифференцирование Логарифмическое дифференцирование – метод, используемый для дифференцирования функций с использованием логарифмической производной функции f. Этот метод часто применяется
Гиперболический сектор Гиперболический сектор – область декартовой плоскости, ограниченная гиперболой и двумя лучами. Гиперболические секторы являются основой для гиперболических функций.
Сложный логарифм Комплексный логарифм определяется как обратная функция экспоненциальной функции. Аргумент комплексного логарифма “прыгает” по 2π как z пересекает отрицательную
Натуральный логарифм от 2 Логарифм 2 является важным натуральным логарифмом, так как степени 2 распределены плотно. Представление логарифма 2 включает
Дискретный логарифм Дискретный логарифм – это обратная операция к возведению числа в степень. В теоретико-групповых терминах, степени 10 образуют циклическую
Натуральный логарифм Натуральный логарифм является математической функцией, которая отображает основание e на число, обратное показателю степени. Он имеет множество применений