Продукт Gromov
-
Определение произведения Громова
- Произведение Громова используется в теории метрических пространств.
- Определяется как расстояние между двумя точками в метрическом пространстве.
-
Мотивация и геометрическая интерпретация
- Произведение Громова связано с неравенством треугольника в метрическом пространстве.
- В гиперболической, сферической или евклидовой плоскости, произведение Громова равно расстоянию между точками.
-
Свойства произведения Громова
- Произведение Громова симметрично и вырождается в конечных точках.
- В гиперболическом пространстве существует обобщенное произведение Громова, которое зависит от угла между геодезическими лучами.
-
δ-гиперболические пространства
- Произведение Громова используется для определения δ-гиперболических пространств.
- δ-гиперболические пространства характеризуются тем, что геодезические линии остаются близко друг к другу на протяжении не более чем 2δ.