Variational inequality
-
Определение вариационного неравенства
- Вариационное неравенство — это неравенство с функционалом, которое нужно решить для всех возможных значений переменной, обычно из выпуклого множества.
- Теория вариационных неравенств изначально разрабатывалась для решения задач равновесия, таких как проблема Синьорини.
-
История теории
- Первая задача с вариационным неравенством была поставлена Антонио Синьорини в 1959 году и решена Гаэтано Фичера в 1963 году.
- Гвидо Stampacchia обобщил теорию в 1964 году, назвав её «вариационным неравенством».
- Georges Duvaut популяризировал теорию во Франции в 1965 году.
-
Основные шаги в изучении проблемы
- Доказательство существования решения.
- Доказательство уникальности решения.
- Нахождение решения или доказательство его регулярности.
-
Примеры вариационных неравенств
- Задача нахождения минимального значения функции действительной переменной.
- Общая формулировка вариационного неравенства в Rn.
- Вариационное неравенство для задачи Синьорини.
-
Историческая статья о теории вариационных неравенств
- Описывает взаимодействие теории упругости и математического анализа
- Создание теории вариационных неравенств Гаэтано Фичера
-
Краткий обзор исследований
- Описывает область вариационных неравенств
- Включает подполе задач механики сплошной среды с односторонними ограничениями
-
Историческая статья о начале теории вариационных неравенств
- Описывает начало теории вариационных неравенств с точки зрения её основателя
-
Научные работы
- Короткая исследовательская заметка о решении задачи Синьорини
- Первая статья с доказательством существования и единственности решения задачи Синьорини
- Английский перевод статьи Фичера 1964 года
- Анонсы результатов статьи Lions & Stampacchia 1967 года
- Важная статья, описывающая абстрактный подход авторов к теории вариационных неравенств
- Статья, содержащая обобщение теоремы Лакса-Милграма
-
Внешние ссылки
- Статья Алессио Фигалли о глобальных однородных решениях задачи Синьорини