Квантовая статистическая механика

Оглавление1 Квантовая статистическая механика1.1 Основы квантовой статистической механики1.2 Энтропия фон Неймана1.3 Канонический ансамбль Гиббса1.4 Грандиозный канонический ансамбль1.5 Рекомендации2 Квантовая статистическая […]

Квантовая статистическая механика

  • Основы квантовой статистической механики

    • Квантовая статистическая механика описывает статистические ансамбли квантово-механических систем. 
    • Оператор плотности S описывает распределение вероятностей по квантовым состояниям. 
    • Математическое ожидание A определяется через спектральную меру и распределение вероятностей. 
  • Энтропия фон Неймана

    • Энтропия фон Неймана является мерой случайности состояния и определяется как Tr(log2 S). 
    • Энтропия максимальна для чистых состояний и равна нулю для полностью определенных состояний. 
    • Энтропия может использоваться для измерения квантовой запутанности. 
  • Канонический ансамбль Гиббса

    • Канонический ансамбль Гиббса описывает ансамбль систем с гамильтонианом H и средней энергией E. 
    • Вероятность состояния с энергией Em пропорциональна e−rH, где r – положительное число. 
    • Энтропия максимизируется при сохранении энергии. 
  • Грандиозный канонический ансамбль

    • Для открытых систем с переменным числом частиц используется большой канонический ансамбль. 
    • Основная функция разделения описывает распределение вероятностей для различных состояний системы. 
  • Рекомендации

    • Статья является заглушкой и нуждается в расширении. 
    • Ссылки на литературу для более глубокого изучения темы предоставлены. 

Полный текст статьи:

Квантовая статистическая механика — Википедия

Оставьте комментарий

Прокрутить вверх