Оглавление [Скрыть]
Оператор Хекке
-
Определение и свойства операторов Гекке
- Операторы Гекке – это линейные операторы, действующие на пространство модулярных форм.
- Они сохраняют пространство модулярных форм определенного веса и являются мультипликативными функциями.
- Идея восходит к работам Адольфа Гурвица и связана с алгебраическими соответствиями между модулярными кривыми.
-
Математическое описание
- Операторы Гекке могут быть выражены через интегральные матрицы и двойные смежные классы в модульной группе.
- В адельном подходе они приводят к двойным смежным группам относительно компактных подгрупп.
-
Явная формула
- Формула для коэффициентов Фурье операторов Гекке позволяет вычислить их собственные значения и коэффициенты Фурье.
- Она показывает, что операторы Гекке коммутируют и сохраняют подпространство остроконечных форм.
-
Алгебры Гекке
- Алгебры операторов Гекке являются коммутативными кольцами и играют важную роль в гармоническом анализе модулярных форм.
-
Связанные математические кольца
- Существуют другие математические кольца, которые также называются “алгебрами Гекке”, хотя их связь с операторами Гекке не всегда очевидна.
-
Рекомендации по цитированию
- Статья содержит инструкции по цитированию и форматированию библиографических описаний в HTML.