Теорема Хирцебруха–Римана–Роха
-
Основные понятия и теоремы
- Теорема Хирцебруха-Римана-Роха связывает классы Тодда с характером Черна для векторных расслоений.
- Формула Хирцебруха утверждает, что классы Тодда могут быть выражены через фундаментальный класс и характер Черна.
- Теорема Римана-Роха для кривых является частным случаем теоремы Хирцебруха-Римана-Роха, а теорема Римана-Роха для поверхностей — это сочетание теоремы Хирцебруха-Римана-Роха и формулы Нетер.
-
Асимптотика Римана-Роха
- Асимптотика Римана-Роха описывает поведение классов Тодда при больших размерностях многообразий.
-
Рекомендации и внешние ссылки
- Статья содержит ссылки на другие источники и литературу по теме.