Трансверсаль (комбинаторика)
Трансверсальный (комбинаторика) Трансверсаль – система представителей, связывающая элементы множества с множествами из другого семейства. Трансверсали полезны в информатике для решения […]
Трансверсальный (комбинаторика) Трансверсаль – система представителей, связывающая элементы множества с множествами из другого семейства. Трансверсали полезны в информатике для решения […]
Решетка подгрупп Решетка подгрупп группы является важным понятием в теории групп. Решетка подгрупп состоит из всех подгрупп группы и имеет
Орбифолдная нотация Орбифолдная нотация используется для описания симметрии в геометрии. Группы симметрии могут быть одномерными, двумерными или трехмерными. Одномерные группы
Обозначение Кокстера Группы Кокстера – это бесконечные группы, связанные с диаграммами Кокстера. Диаграммы Кокстера представляют собой графы с узлами и
Группы точек в трех измерениях Симметрии в трехмерном пространстве включают точечные, линейные и вращательные группы. Точечные группы включают группы симметрии
Четность перестановки Четность перестановки определяется как четность числа инверсий или транспозиций, на которые она может быть разложена. Перестановка является четной
Индекс подгруппы Нормальные подгруппы простого индекса играют важную роль в теории групп. Нормальные подгруппы с простым индексом являются подгруппами, на
Представительство в группе Теория представлений конечных групп является важным инструментом в изучении конечных групп и их приложений. Конечные группы возникают
Групповой изоморфизм Группа – множество с бинарной операцией, удовлетворяющей определенным условиям. Изоморфизм между группами – биективное отображение, сохраняющее структуру группы.
Коммутатор Статья представляет собой список математических тождеств и правил Лейбница в абстрактной алгебре. Тождества связаны с коммутатором и отображением adA,
Группа Лоренца Группа Лоренца является группой симметрии пространства-времени Минковского. Она имеет две подгруппы: ортохронную группу Лоренца и группу Лоренца с
Арифметическая группа Арифметические группы – это группы, которые имеют арифметические свойства. Арифметические группы играют важную роль в теории чисел и
Группа типа “Ложь” Конечные простые группы типа Ли имеют множество исключений и особых свойств. Существует ошеломляющее количество “случайных” изоморфизмов между
Множитель Шура Множитель Шура – это алгебраический объект, связанный с группой и ее представлением. Он играет важную роль в комбинаторной
Группа кватернионов Группа кватернионов является нормальной подгруппой GL(2,3) и изоморфна симметричной группе S4. Существует модульное представление группы кватернионов, реализующее ее
Список тем по теории групп Теория групп – центральная область абстрактной алгебры, изучающая алгебраические структуры. Группы повторяются во всей математике
Глоссарий по теории групп Группа – множество с ассоциативной операцией, допускающей идентичный элемент и обратную операцию. Подгруппы и нормальные подгруппы
Прямая сумма групп В математике группа G называется прямой суммой двух нормальных подгрупп с тривиальным пересечением. Метод построения групп может
Аддитивная идентичность Аддитивное тождество – элемент группы, для которого выполняется свойство сложения. В натуральных числах, целых числах, рациональных числах, реальных