Коллектор Финслера
- Финслерово многообразие — дифференцируемое многообразие с финслеровой метрикой.
- Финслерова метрика представляет собой непрерывную неотрицательную функцию на касательном расслоении.
- Метрика должна быть гладкой и обладать свойствами субаддитивности и положительной определенности.
- Финслерова метрика обратима, если она удовлетворяет дополнительным условиям.
- Примеры финслеровых многообразий включают гладкие подмногообразия нормированных векторных пространств и римановы многообразия.
- Финслеровы многообразия определяют внутреннюю квазиметрическую через асимметричную норму для каждого касательного пространства.
- Геодезические линии на финслеровых многообразиях минимизируют длину и удовлетворяют уравнению Эйлера-Лагранжа.
- В финслеровых многообразиях существуют кривые, минимизирующие длину, и существует единственная максимальная геодезическая.
Полный текст статьи: